The properties of MKID made of crystal Al films and amorphous Al films

M. Naruse, Y. Sekimoto (NAOJ, The Univ. of Tokyo)
T. Noguchi, A. Miyachi, Y. Uzawa, K. Karatsu (NAOJ)
T. Nitta (Univ. of Tsukuba)
Outline

• Sub-millimeter camera developments at NAOJ
 - lens, double slot antenna
• Motivation
• Epitaxial Al films using by MBE
• Results
Long-term Goal

- Pixel: 10000 (2015)
- Frequency 100 GHz (3mm) – 3 THz (100 um)
- NEP $\sim 10^{-19}$ W/Hz$^{1/2}$
- Dynamic Range $> 10^5$
- Simple, compact and low cost instrument as well as high performance
Millimeter Camera Development at NAOJ ATC

Collaborator
- Satellite for B-Mode Polarization of CMB, LiteBIRD
 - KEK, RIKEN, Okayama Univ.
- mm-wave Telescope in Antarctica
 - Univ. of Tsukuba

Short-time Schedule

<table>
<thead>
<tr>
<th>year</th>
<th>pixel</th>
<th>MKID + optics</th>
<th>Other task</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>120</td>
<td>9 pixel</td>
<td>multiplex readout</td>
</tr>
<tr>
<td>2011</td>
<td>400</td>
<td>102 pixel</td>
<td>10^{-17} (W/Hz$^{1/2}$)</td>
</tr>
<tr>
<td>2012</td>
<td>1000</td>
<td>1024 pixel</td>
<td>System</td>
</tr>
</tbody>
</table>
Overview of the camera design

- Microwave Kinetic Inductance Detector (Day, 2003)
- Lens coupled double slot antenna (Fillipovic, 1993)

MKID

Double Slot Antenna 500 um

9 pixel @ 220 GHz

102 pixel @ 440 GHz
Overview of the camera design

- Microwave Kinetic Inductance Detector (Day, 2003)
- Lens coupled double slot antenna (Fillipovic, 1993)

102 pixel @ 440 GHz

Double Slot Antenna 500 um

9 pixel @ 220 GHz
Fabrication of Lens Array

Machining by High-speed spindle

- Prototype Silicon Lens Array
 - 3 x 3 array
 - Lens diameter: D = 4.09 mm → 3 x 1.36 mm (= 220GHz)
 - Extension thickness: L = 0.35 mm → good beam quality

P-V: 20 um

completed 9 pixel silicon lens array
Outline

• Sub-millimeter camera developments at NAOJ
• Motivation
• Epitaxial Al films using by MBE
• Results
Origins of Noise

Generation-Recombination Noise (Barends, 2009)

$$\text{NEP} \propto \left(\frac{N_{qp}}{\tau_{GR}} \right)^{1/2}$$

$$N_{qp} \rightarrow \text{low temperature} \quad (< Tc/10)$$

Gap energy vs T

Number of quasi-particle vs T

$$\text{NEP} = \frac{1}{N_{q}N_{q}^{*}V_{eff}} \int_{\Delta}^{\hbar} \frac{1 - 2 f(E)}{\sqrt{E^2 - \Delta^2}} dE$$

$$n_{qp} = 2N_{q}^{*}(0) \int_{\Delta}^{\infty} N(E)f(E)dE$$
Improvement of Sensitivity

Generation-Recombination Noise (Barends, 2009)

\[\text{NEP} \propto \frac{N_{qp}}{\tau_{\text{GR}}} \]

- \(N_{qp} \rightarrow \text{low temperature} \quad (\textcolor{red}{<} \text{Tc/10}) \)
- \(\tau_{\text{GR}} \rightarrow \text{weak electron-phonon coupling (Al, Ta, TiN)} \)

- \(\text{T dependence of Quasiparticle lifetime} \)

\[\text{Generation-Recombination diagram of cooper pair} \]

\[\text{quasi-particle} \quad \text{phonon} \]

\[\text{cooper pairs} \quad \text{N(E)} \]
Is Film Quality Important?

Barends, 2009
Epitaxial Aluminum films

<table>
<thead>
<tr>
<th>Metal</th>
<th>Dielectric</th>
<th>W (µm)</th>
<th>tanδ_eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb (poly)</td>
<td>“wet” SiO₂/Si</td>
<td>10</td>
<td>2.4e-5</td>
</tr>
<tr>
<td>Nb (poly)</td>
<td>Si</td>
<td>10</td>
<td>1.5e-5</td>
</tr>
<tr>
<td>Nb (poly)</td>
<td>Sapphire</td>
<td>10</td>
<td>1.8e-5</td>
</tr>
<tr>
<td>Al (poly)</td>
<td>“dry” SiO₂/Si</td>
<td>10</td>
<td>2.0e-5</td>
</tr>
<tr>
<td>Al (poly)</td>
<td>Si</td>
<td>10</td>
<td>1.5e-6</td>
</tr>
<tr>
<td>Al (poly)</td>
<td>Sapphire</td>
<td>10</td>
<td>1.6e-6</td>
</tr>
<tr>
<td>Al (epi)</td>
<td>Sapphire</td>
<td>10</td>
<td>1.8e-6</td>
</tr>
<tr>
<td>Re (epi)</td>
<td>Sapphire</td>
<td>10</td>
<td>1.8e-6</td>
</tr>
<tr>
<td>TiN (poly)</td>
<td>Si</td>
<td>10</td>
<td>9.6e-7</td>
</tr>
</tbody>
</table>

Only Q measurements!

(Sage, 2011)
What is a good quality film?

- Decreasing defects and impurities, smooth surface
- Reduce the probabilities of scattering and resistivity
Outline

• Sub-millimeter camera developments at NAOJ
• Motivation
• Fabrication of epitaxial Al films using by MBE
• Results
Molecular Beam Epitaxy

Cartoon of MBE chamber

Cartoon of crystal growth
Crystal Aluminum on Si wafers

Molecular Beam Epitaxy

Al on Si (111) wafer
Thickness 160nm
Cleaning: BHF + 650 deg. (20 min)
Back ground: 2×10^-8 Pa
Wafer: 75 deg.
XRD and AFM measurements

X-ray diffraction pattern

Picture of Al surface with AFM
Outline

• Sub-millimeter camera developments at NAOJ
• Motivation
• Epitaxial Al films using by MBE
• Results
Measurement Set-up

Block diagram

- Signal generator (4-8 GHz)
- KIDs
- CLNA
- Coaxial Cable
- 0.1 K Cryostat
- Re[S21]
- Im[S21]

0.1 K Stage

- KIDs
- MW

0.1 K dilution refrigerator

lab
NEP Calculations (Baselmans, 2008)

Eq. (1) \[\text{NEP}^2 = S_x \left(\frac{\pi \tau}{\Delta} \left(\frac{\partial x}{\partial N_{qp}} \right) \right)^{-2} (1 + \omega^2 \tau^2)(1 + \omega^2 \tau_{res}^2) \]

Eq. (2) \[\frac{\partial \theta}{\partial N_{qp}} = \frac{\partial R}{\partial F} \frac{\partial N_{qp}}{\partial N_{qp}} = \frac{\partial R}{\partial \theta} \frac{\partial \theta}{\partial N_{qp}} = \frac{4}{F_0} - \text{noise responsibility lifetime} \]

Eq. (3) \[\frac{\partial R}{\partial N_{qp}} = \frac{\partial R}{\partial \theta} \frac{\partial \theta}{\partial N_{qp}} = 0.26 \frac{\partial \theta}{\partial N_{qp}} \]
Noise Measurements

S21 spectrum @140 mK

IQ spectrum and fluctuation

Noise Spectrum
F_0 vs N_{qp}

N_{qp}/volume (um^3) vs T

f_0 vs N_{qp}

0.1-0.55 K

EB-Al

f_0 vs T

$\delta f_0/f_0$ vs Temperature (K)
Relaxation Measurements

MBE-Al on Si(100) @230mK
LED pulse duration 50 us
Electrical NEP of MKID
Why NEP is Equivalent?

- Good vs Poor

- NEP (W/Hz^{1/2})
 - MBE 140 nm Bad
 - Sputter 100 nm

- RRR vs Temperature (K)

- Quasiparticle Lifetime (s)
 - MBE–Al (7.08 GHz)
 - EB–Al (4.52 GHz)
 - Theory (Kaplan)
Why NEP is Equivalent?

- Limited by the measurement system?
- The film quality is not enough?
Light-tight Set-up

Life time vs T

Low pass coax filter (Milliken, 2007)

Baselmans, 2008
Background Pressure

$2 \times 10^{-8} \text{ Pa} \rightarrow < 10^{-9} \text{ Pa}$

Ion pump + TSP TMP chamber

AVC inc.
Summary

- MKID camera @ NAOJ.
- The properties of the epitaxial Al film is so far equivalent to that of amorphous one.
- Improving the set-up and vacuum system.