Two Level System Noise (TLS) and RF Readouts

Christopher McKenney

4th Microresonator Workshop
29th July, 2011
Two Level System (TLS) and Superconducting Resonators

Have well known effects in superconducting resonator applications
• Energy dissipation – limits Q’s of devices (Q-bits, MKIDS, etc)
• Frequency shift – small shifts in resonant frequency
• Add Frequency Noise

No clear theoretical understanding of noise
• Temperature power power dependence well mapped
• Limited exploration of variation with resonator frequency
• Some TLS physics suggest lower noise as hf << kT
Possible use of LC resonators at Kinetic Inductance Thermometers (KITs)
- FIR radiation absorbed by suspended bolometer island
- Temperature read out via RF-KIT
- RF - Require large capacitors with amorphous dielectrics (TLS noise)

Quasiparticle density (therefore L) depends on temperature:

\[n_{qp} \propto \sqrt{\frac{2\pi k_B T}{\Delta}} e^{-\Delta/k_B T} \]
Kinetic Inductance Thermometry And Radio-Frequency Readouts

TLS Noise - potentially limiting factor in this FIR detection scheme

Need TLS Noise < Photon Noise

\[S_{TLS} < \frac{\beta^2}{4\frac{Q_i^2}{\sigma^2}} \frac{1+n}{n\Delta\nu} \]

\(\beta \) – ratio of frequency to dissipation response
\(n \) – optical efficiency ~ 1
\(\Delta\nu \) – optical bandwidth

\(\beta = \frac{\delta\sigma_2}{\delta\sigma_1} \sim 1 - 10 \)

Noise for a FIR spectrometer detector with typical values:
\(n = 1, \beta = 10, Q_i = 10^5, \Delta\nu=0.3 \text{ GHz}: \ S_{TLS} < 2 \times 10^{-17} / \text{ Hz} \)

Is this achievable with radio-frequency readouts?
Exploration of TLS effects at Radio-Frequency

Lumped LC resonators spanning wide frequency range

Inductance
• High α materials – TiN, NbTiN
• Vary frequency of resonators by adjusting length of meander inductors

Capacitance – goals:
• Interdigitated Capacitors – 250 MHz – 3 GHz
• Parallel Plate – 50 MHz – 1 GHz
• Multiple dielectrics – SiO2, SiN, Si, SOI

Fabricated our first device:
• 28 Resonators
• IDC, 250 MHz – 1 GHZ
Devices: Lumped LC resonators spanning wide frequency range

- Device design:
 - 31 Resonators

- Resonator + CPW center conductor:
 - NbTiN (Tc ~ 14 K)

- Ground Planes: Nb

- Dielectric coating: 200nm SiO2

- Frequency: 250 MHz – 1 GHz

- IDC:
 - Fingers 2μm wide, 2μm spacing
 - 32 Fingers total (~ 160 μm long)
 - Finger length: 1mm
 - Capacitance ~ 2 pF

- Inductor:
 - NbTiN ~ 6 pH / square
Probe devices by measuring forward transmission (S21)

-20 dB

V_{RF}

IQ Demodulator

LPF

ADC

I

Q

RT Amp

SiGe Amp

T = 4 mK

T_0 = 20 mK
Device response plots a circle in the IQ plane:

For the resonator with $f_{res} = 813$ MHz:

$$S_{21} = 1 - \frac{Q_r}{Q_c} \frac{1}{1 + 2i\delta x Q_r}$$

Fits yield:

$$Q_i = 1.0 \times 10^5$$
$$Q_c = 3.8 \times 10^6$$

Devices are undercoupled!
Shift in resonant frequency – Matches TLS predictions

\[\frac{f_R - f_0}{f_0} = \frac{F \delta_{TLS}^0}{\pi} \left[\text{Re} \left(\frac{1}{2} - \frac{\hbar \omega}{2 j \pi k_B T} \right) - \ln \left(\frac{\hbar \omega}{2 k_B T} \right) \right] \]

Lines are fits to:

- 335 MHz
- 813 MHz
- 1.10 GHz
Loss tangent fit over 28 resonators:

Very little change as frequency varies ~ 20%
Sonnet simulations indicate $F \sim 0.035$ for our geometry
$Q_{TLS} \sim 800$ for this amorphous SiO2
TLS saturates with increasing power – $T = 100$ mK
Observe decreasing Qi with temperatures.

Change in Qi with temperature
Internal Qi depends strongly on electric field and temperature

Weak Fields – TLS saturates as temperature increases

$$\delta_{TLS} = \delta_{TLS}^0 \tanh \left(\frac{\hbar \omega}{2kT} \right)$$

Under Bloch model TLS saturation condition

$$\Omega^2 T_1 T_2 \gg 1$$
$$\Omega = \vec{d} \cdot \vec{E} / \hbar$$

For SiO2 –

$$E_{critical} \approx 2.6 \left(\frac{f}{GHz} \right)^{3/2} \coth^{1/2} \left(\frac{hf}{2kT} \right) \left(\frac{T}{200 \text{ mK}} \right)^{0.75}$$

4 GHz, 200 mK: Ecrit \(\sim \) 30 V/m
500 MHz, 100mK: Ecrit \(\sim \) 1 V/m
Our fields \(\sim \) 10^3 V/m, well above critical field
Internal Qi depends strongly on electric field and temperature

Weak Fields – TLS saturates as temperature increases

\[\delta_{TLS} = \delta_{TLS}^0 \tanh \left(\frac{\hbar \omega}{2kT} \right) \]

Under Bloch model TLS saturation condition

\[\Omega^2 T_1 T_2 >> 1 \]
\[\Omega = \vec{d} \cdot \vec{E} / \hbar \]

For SiO2 – \(E_{critical} \approx 2.6 \left(\frac{f}{GHz} \right)^{3/2} \coth^{1/2} \left(\frac{hf}{2kT} \right) \left(\frac{T}{200mK} \right)^{0.75} \)

4 GHz, 200 mK: \(\text{Ecrit} \sim 30 \text{ V/m} \)
500 MHz, 100mK: \(\text{Ecrit} \sim 1 \text{ V/m} \)
Our fields \(\sim 10^3 \text{ V/m} \), well above critical field
Measure noise as S_{21} fluctuations

(I) Amplitude and Frequency (Q) components

- Decompose noise spectra (S) into parallel and perpendicular components
- Fractional Frequency Noise Spectrum

\[
\frac{S_{\delta f r}(v)}{f_r^2} = \frac{S_{||}}{16Q^2r^2}
\]

- Our devices – undercoupled ($Q_c/Q_r < 0.05$)
- TLS fluctuations not far above amplifier noise
- Phase noise $\sim 2-4x$ amplifier noise
- Measuring at internal powers not far below critical power in NbTiN
Fractional Frequency Noise Spectra - Power dependence

- Increasing power saturates TLS
- Observe near $P^{-1/2}$ dependence Indicative of TLS
- Observed from ~ 500 MHz – 1 GHz
Fractional Frequency Noise Spectra

- Increasing Temperature saturates TLS
- Observe $\sim T^{-2}$ dependence – characteristic of TLS
- Observed from ~ 500 MHz – 1 GHz
- Unusual slope is clear on temperature plot – usually $S_{\text{TLS}} \sim \nu^{-1/2}$

Graphs:

- $f_r = 537$ MHz, $P_{\text{read}} \sim -88$ dBm
- $f_r = 916$ MHz, $P_{\text{read}} \sim -84$ dBm

The graphs show the frequency spectra for different temperatures, with $S_{\delta f/r^2}$ plotted against frequency. The spectra are marked with different lines for $T = 20$ mK, $T = 100$ mK, and $T = 200$ mK.
Observed slope deviation from $\nu^{-1/2}$
- Operating about 10 dB below critical current – nonlinearities
- Severely undercoupled
 - Noise is large compared to radius of curvature
 - Phase noise is 2-4x amplifier noise
 - Mixing of I & Q components?

\[
\frac{S_{\delta f}}{f_r^2} (\text{rad/Hz}^2) = \frac{\epsilon_\parallel}{\epsilon_\perp} f = \frac{Q_r}{Q_c}
\]

$\nu = 916 \text{ MHz}$, $P_{\text{read}} \sim -84 \text{ dBm}$
FIR Applications:
• What is the TLS noise under conditions FIR detection?

\[P_{opt} \sim P_{diss} \]
\[P_{opt} = (\hbar \nu_{opt}) \Delta \nu \quad P_{diss} = \frac{\omega_{RF} E_{res}}{Q_i} \quad E = \frac{1}{2} CV^2 \]

Readout: \(Q_i \sim 10^5 \), \(\omega_{RF} \sim 100 \text{ MHz} \), \(C \sim 10 \text{ pF} \)
Spectroscopy: \(\nu = 300 \text{ GHz}, \Delta n = 0.3 \text{ GHz} - V \sim 1.3 \text{ mV} \)
Photometry: \(\nu = 300 \text{ GHz}, \Delta n = 100 \text{ GHz} - V \sim 25 \text{ mV} \)
S_{TLS} versus applied voltage to IDC capacitor:

Fractional Frequency Noise

Calculated Capacitor Voltage $<V>$

$$S_{\delta f_r, TLS} < \frac{\beta^2}{4Q_i^2} \frac{(1+n)}{n\Delta \nu} \sim 10^{-17}$$
Conclusions

Measured TLS noise from 500 MHz – 1 GHz
• TLS noise may be suitable for FIR detection with RF readout schemes
• No clear readout frequency dependence noticed

Remaining goals:
• Measure over wider frequency range and lower powers
 • Improve coupling – measure at lower powers
 • Improve electronics – measure noise at lowest resonator frequencies
• More device geometries: Parallel plate, different size IDC, etc
Thanks

Rick LeDuc

BeongHo Eom

Peter Day

Loren Swenson

Jonas Zmuidzinas
Kinetic Inductance Thermometry And Radio-Frequency Readouts

Frequency dependence of response
Mattis-Bardeen: Surface impedance

\[
\frac{\sigma_1}{\sigma_N} = \frac{2}{\hbar \omega} \int_{\Delta} dE \frac{E^2 + \Delta^2 + \hbar \omega E}{\left(\sqrt{E^2 - \Delta^2}\right)\left(\left(E + \hbar \omega\right)^2 - \Delta^2\right)} \left[f(E) - f(E + \hbar \omega)\right]
\]

\[
\frac{\sigma_2}{\sigma_N} = \frac{1}{\hbar \omega} \int_{\Delta} dE \frac{E^2 + \Delta^2 - \hbar \omega E}{\left(\sqrt{E^2 - \Delta^2}\right)\left(\Delta^2 - \left(E + \hbar \omega\right)^2\right)} \left[1 - 2f(E)\right]
\]

High Qi’s and responses possible
Working at RF makes electronics simpler
Easily multiplex large number of detectors