background limited antenna coupled MKID arrays for ground based imaging

Jochem Baselmans, Andrey Baryshev, Stephen Yates, Akira Endo, Lorenza Ferrari, Pascale Diener, Jan-Joost Lankwarden, Pieter de Visser, Reinier Janssen, Henk Hoevers, Teun Klapwijk
Outline

- A-MKID
- Photon noise limited performance
- Hybrid antenna coupled MKID
- Test chip noise performance – effect of Al and interfaces
- A-MKID system tests
A-MKID

- 2 color imaging instrument for APEX, 870 µm and 350 µm
- 15 arcmin FOV, 1 Fλ pixel spacing
- 2 separate arrays of 4 sub-arrays in the FP, polarizer to select band
 - 870 µm
 - 350 µm
 - # pixels: 20,000 pixels
 - 3.200 pixels
 - goal sensitivities: 34 mJy s$^{0.5}$
 - 59 mJy s$^{0.5}$
 - goal pixel NEP: 2.7e-15 W/Hz$^{0.5}$
 - 1.4e-14 W/Hz$^{0.5}$
A-MKID :: Read-Out Concept

- Phase readout due to low Q of the devices (20,000) due to loading
- MPIfR developed readout (full IQ)
- Bandwidth 1.25 GHz
- 32,768 bins (76 kHz resolution)
- 8 ENOB (expected)
A-MKID - readout

- Phase readout due to low Q of the devices (20,000) due to loading
- MPIfR developed readout (full IQ)
 - Bandwidth 2.5 GHz
 - 32768 bins (76 kHz resolution)
 - 8 ENOB (expected)
 - based upon E2V 10AQ 190 ADC, 4×1.25 Gsample/sec
 - and analog devices AD9739 DAC
Photon noise limited performance

- Random arrival rate of photons creates a white noise in quasiparticle number rolled off at the lifetime

- On top of this there is recombination noise from the random recombination of excess quasiparticles

- If all quasiparticles are due to photon absorption:

\[
S = (S_{G-R} + S_{\text{photon}}) \approx \left(\frac{2N_{qp,p} \tau_{qp}}{1 + (\omega \tau_{qp})^2} + \frac{2N_{qp,p} \tau_{qp} \eta \hbar \nu / \Delta}{1 + (\omega \tau_{qp})^2} \right) \cdot \left[\frac{\delta(A, \theta)}{\delta N_{qp}} \right]^2
\]
Photon noise limited performance

- Photon noise level $\propto \nu$ and independent of radiation power!

- Photon noise level not much above the G-R noise
 - Not easy to reach
 - Carefull material selection required

- Photon noise limited KIDs have always a contribution due to qp recombination
 - $S_{\text{photon}} + S_{\text{G-R}} = S_{\text{photon}} (1+0.85)$ at 350 GHz for Al

<table>
<thead>
<tr>
<th>Noise PSD</th>
<th>Quasiparticle recombination</th>
<th>Photon arrival</th>
<th>KID responsivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S = (S_{G-R} + S_{\text{photon}}) \sim \left(\frac{2N_{qp,p} \tau_{qp}}{1 + (\omega \tau_{qp})^2} + \frac{2N_{qp,p} \tau_{qp} \eta \nu / \Delta}{1 + (\omega \tau_{qp})^2} \right) \cdot \left[\frac{\delta(A, \theta)}{\delta N_{qp}} \right]^2$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hybrid antenna coupled MKID
Hybrid antenna coupled MKID
NbTiN as MKID material

- Lower frequency noise
- 1.2 THz gap frequency
- Very good readout power handling

Rami Barends, Ph.D. Thesis (Deft University) 2009
Hybrid antenna coupled MKID
Al to detect quasiparticles

- Al on sapphire (see P. de Visser) has shown generation-recombination noise
- Using Al to absorb the radiation should allow us to reach the photon noise limit

Hybrid antenna coupled MKID
Antenna – lens to absorb radiation

- Lens array
 - creates space for KIDs
 - High filling fraction
 - Focussing of radiation to antenna
- Si lens array + Parylene-C $\lambda/4$ AR coating
CST modelling + measurements
Fabrication – Hybrid KIDs on Si

1. KID pattern in NbTiN (white)
 - Dry etch 300 nm NbTiN
 - 13.5 sccm SF$_6$
 - 20 sccm O$_2$
 - 65 ° slopes

2. Al resonator part (blue)
 - 50 nm Al sputter depo
 - Wet etch of excess Al or Lift-off process

3. Metal air bridges (red)
 - 250 nm Al sputter depo
 - On sacrificial resist layer
 - Wet etch to define bridges
Fabrication: Al lift-off vs wet etching

- Lift-off process (until recent)
 - Hard to reproduce
- Wet etch process
Result
Hybrid KIDs with lift-off process

- Photon noise limited performance
- High optical efficiency
- But.... 1/f noise
 - Use amplitude readout -> too stringent requirements digital electronics
 - Reduce phase noise at low frequencies

Test chip

- CPW resonators 3-2-3 μm wide
- Change the length of the Al section
- Also HW devices (without interface)

Green = substrate
Blue = Al on substrate
Red = Al on NbTiN
White = NbTiN
Test chip performance
Lift-off devices

1 min Ar+ RF cleaning prior to Al deposition, definition with lift-off

- No effect of interfaces
- Frequency noise determined solely by Al
 - Widening NbTiN section has no influence
 - Noise scales with Al length
- Noise spectra with much Al have $1/F$ below 100 Hz
 - $F^{-0.7}$ for 100% Al on Si resonators

H15 batch made with lift-off

Expected for NbTiN

Much wider resonators

Same – no interface effect

At optimum power

Quarter wave
Half wave
expected level Gao et al
8x9 array

S_{F/F_0} at $P=40$dBm and 1 kHz

F^{-1}

$F^{-0.5}$
Test chip performance
wet – etch devices

No Ar+ etch prior to Al deposition, but buffered HF dip, definition wet etch

- Frequency noise only weak function of Al length
- Noise level higher for pure NbTiN resonators
- Hybrid frequency noise low, especially at low F: – 10 dB at 1 Hz

H20 batch made with lift-off
System test for A-MKID test camera

He7 test cryostat

- Detector array
- BP filter @ 0.3 K
- LP filter 0.4 THz @ 1K
- LP filter 0.6 THz @ 4K
- LP filter 0.8 THz @ 77K
- Goretex @ 300K
System test for A-MKID test camera
H20 with etching full system measurement

- 1/f significantly reduced
- 1/f noise is now from the system and can be (partly) removed
F spacing

- 4±2 MHz dF
- Q=20,000
- Only for large arrays!
Conclusions

- We are developing large arrays for the A-MKID camera and NIKA
 - Noise properties differ from 1 layer KIDs, especially at low F
 - NbTiN-Al interface does not play a role
- Devices are photon noise limited at high modulation frequencies
- Approach BLIP in band of operation
Results
H10 with lift off measured with cryogenic BB

- Photon noise limite performance
- 1/F from the device dominates below 10 Hz